

Projektabschlussveranstaltung Nachhaltige Erden

Nachhaltige Erden

Untersuchungen zur Produktentwicklung

Michael Emmel
Lehr- und Versuchsanstalt für Gartenbau
Hannover-Ahlem

Nachhaltige Erden

Substratzusammensetzung

Bezeichnung	Substratausgangsstoff [Vol%]						
	Holzfasern	olzfasern Rindenhumus		Kompost B	Kompost C		
Mischung 1	60	20	20				
Mischung 2	50	20	30				
Mischung 3	40	20	40				
Mischung 4	60	20		20			
Mischung 5	60	20			20		
Kontrolle	Blumenerde (torfbasiert)						

Versuchsansätze

Verwendung

Lagerung

Foto: Hilko Eilers, LUFA Nord-West

Versuchsbeginn (KW 26)

Erscheinungsbild nach 2 Wochen (KW 28)

20 % Kompost A 60 % Holzfasern 20 % Rindenhumus

30 % Kompost A 50 % Holzfasern 20 % Rindenhumus

40 % Kompost A 40 % Holzfasern 20 % Rindenhumus

20 % Kompost B 60 % Holzfasern 20 % Rindenhumus

20 % Kompost C 60 % Holzfasern 20 % Rindenhumus

Kontrolle torfbasierte Blumenerde

Erscheinungsbild nach 6 Wochen (KW 32)

20 % Kompost A 60 % Holzfasern 20 % Rindenhumus

30 % Kompost A 50 % Holzfasern 20 % Rindenhumus

40 % Kompost A 40 % Holzfasern 20 % Rindenhumus

20 % Kompost B 60 % Holzfasern 20 % Rindenhumus

20 % Kompost C 60 % Holzfasern 20 % Rindenhumus

Kontrolle torfbasierte Blumenerde

Erscheinungsbild nach 10 Wochen (KW 36)

20 % Kompost A 60 % Holzfasern 20 % Rindenhumus

30 % Kompost A 50 % Holzfasern 20 % Rindenhumus

40 % Kompost A 40 % Holzfasern 20 % Rindenhumus

20 % Kompost B 60 % Holzfasern 20 % Rindenhumus

20 % Kompost C 60 % Holzfasern 20 % Rindenhumus

Kontrolle torfbasierte Blumenerde

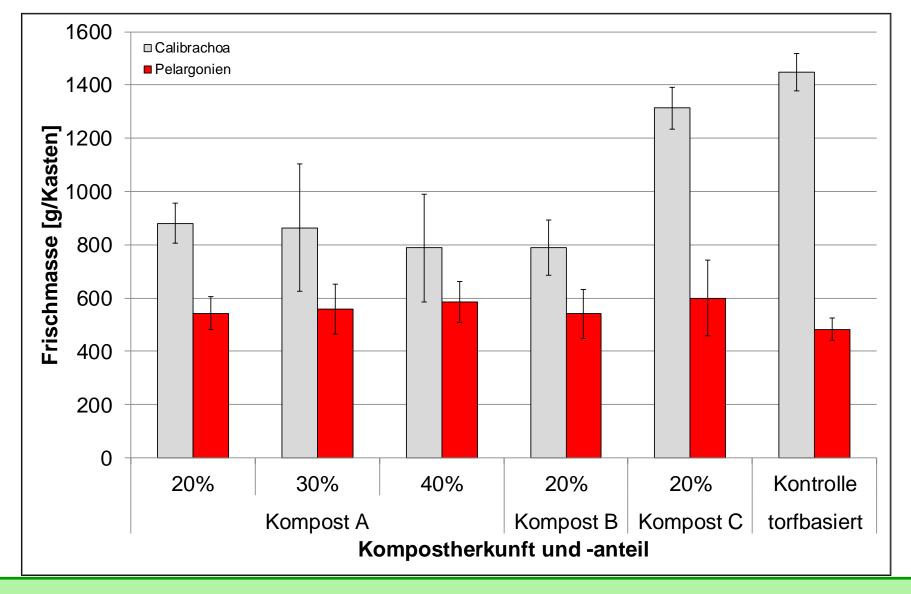
Erscheinungsbild nach 14 Wochen (KW 40)

20 % Kompost A 60 % Holzfasern 20 % Rindenhumus

30 % Kompost A 50 % Holzfasern 20 % Rindenhumus

40 % Kompost A 40 % Holzfasern 20 % Rindenhumus

20 % Kompost B 60 % Holzfasern 20 % Rindenhumus


20 % Kompost C 60 % Holzfasern 20 % Rindenhumus

Kontrolle torfbasierte Blumenerde

Versuchsergebnis

Chemische Substrateigenschaften (Versuchsbeginn)

	рН-	mg/l Substrat						Salz	
Bezeichnung	Wert CaCl ₂	NH ₄ -N CaCl ₂	NO ₃ -N CaCl ₂	N CaCl ₂	P ₂ O ₅ CAL	K ₂ O CAL	N a H ₂ O	CI H ₂ O	g/l
20 % Kompost A	6,8	154	5	159	678	1675	69	329	1,73
30 % Kompost A	7,1	160	6	166	798	1870	74	353	1,99
40 % Kompost A	6,8	133	10	143	683	1683	71	296	1,90
20 % Kompost B	6,9	255	5	260	620	1580	180	465	2,37
20 % Kompost C	5,5	41	52	93	252	733	44	137	1,43
Kontrolle	5,1	117	126	243	153	360	32	23	1,07

Chemische Substrateigenschaften (Versuchsende)

	pH- Wert CaCl ₂	mg/l Substrat					
Bezeichnung		NH ₄ -N CaCl ₂	NO ₃ -N CaCl ₂	N CaCl ₂	P ₂ O ₅ CAL	K ₂ O CAL	Salz g/l
20 % Kompost A	5,5	7	317	324	893	1181	3,43
30 % Kompost A	5,9	7	294	301	910	1386	3,44
40 % Kompost A	6,0	7	277	284	937	1321	3,00
20 % Kompost B	5,7	7	409	416	898	1260	4,29
20 % Kompost C	5,7	5	217	222	519	636	2,54
Kontrolle	4,6	10	265	275	310	500	3,46

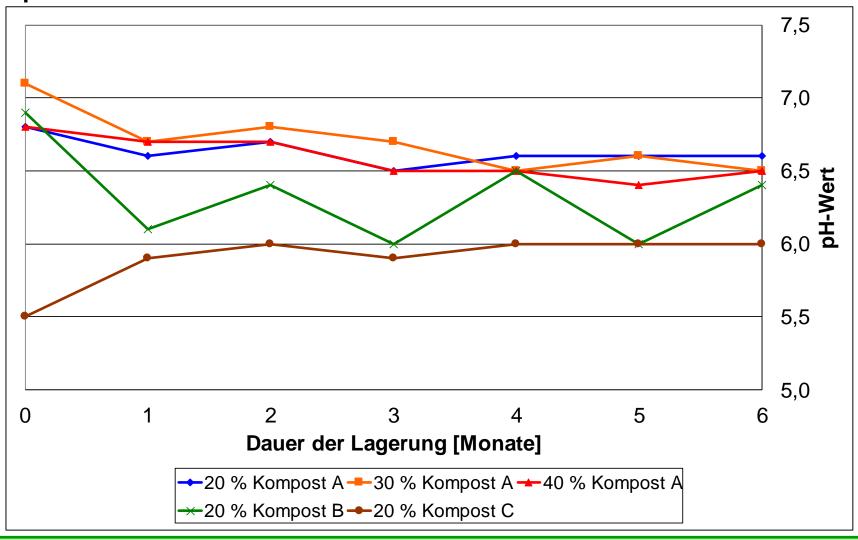
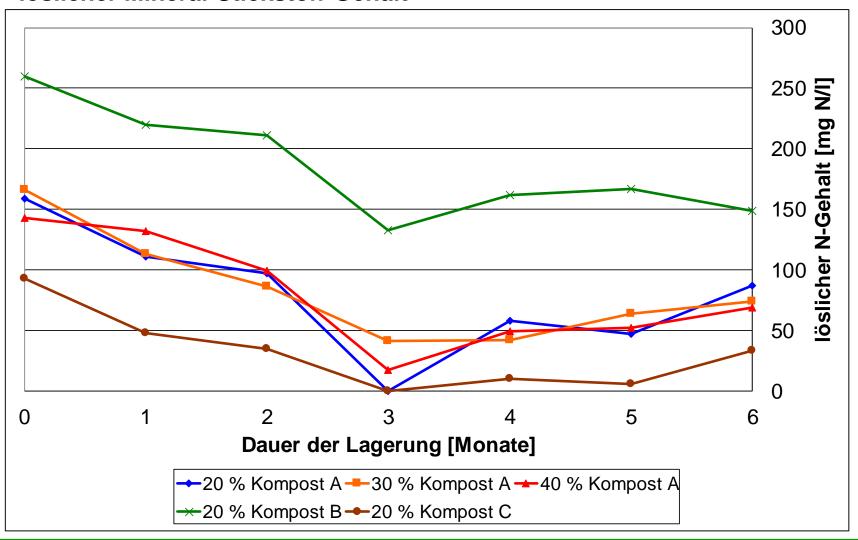
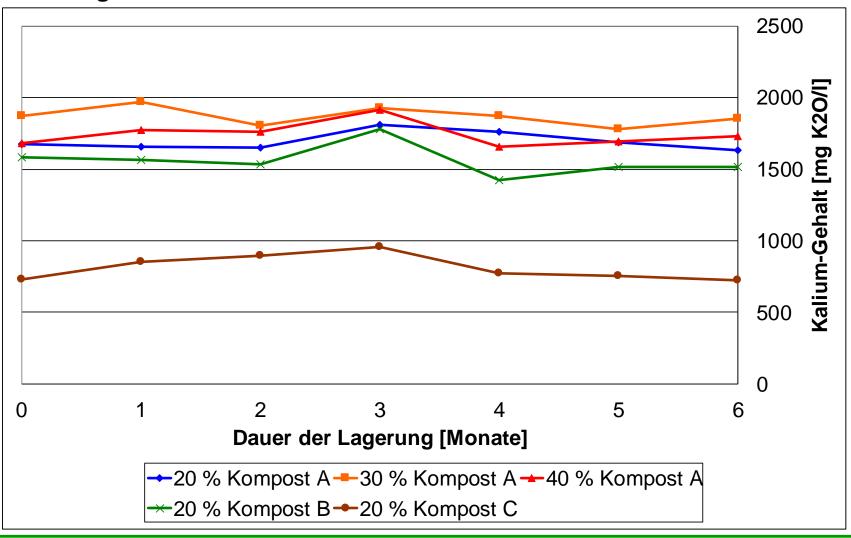


Foto: Hilko Eilers, LUFA Nord-West



pH-Wert



löslicher Mineral-Stickstoff-Gehalt

Kaliumgehalt

Erscheinungsbild nach 2 Monaten

Foto: Hilko Eilers, LUFA Nord-West

Nachhaltige Erden

Zusammenfassung der Untersuchungsergebnisse

- ➤ Pelargonien entwickelten sich in den torffreien Blumenerden ebenso gut wie in einer torfbasierten Blumenerde.
- Bei Calibrachoa kann es zu Chlorosen und Minderwuchs kommen.
- Während der Lagerung traten keine Trauermücken oder unangenehmen Gerüche auf.
- Es kam bei allen torffreien Blumenerden zu einer starken Abnahme des Gehaltes an löslichem Mineralstickstoff und zu sichtbarer Verpilzung.
- ➤ Um die torffreien Blumenerden für einen breiten Anwendungsbereich sicherer zu machen, sollten die in der RAL-Gütesicherung für Blumenerden vorgegebenen Grenzwerte eingehalten werden.

Projektabschlussveranstaltung Nachhaltige Erden

Nachhaltige Erden

Untersuchungen zur Produktentwicklung

Vielen Dank für die Aufmerksamkeit